When it comes to the IT industry, it’s not often that a technology developed many decades ago is still deemed important enough to still be widely used by administrators and other users. Even modern servers and storage systems are running RAID technology - mostly in enterprises, but it has become more prevalent in consumer NAS systems as well. RAID has survived for more than 30 years, and it still plays a major role in data storage to this day. Why is that? Glad you asked.
Let’s start at the beginning.
In 1987, David Patterson, Garth A. Gibson, and Randy Katz invented the term RAID while at the University of California in Berkeley. The following year, they published a paper about the “Case for Redundant Arrays of inexpensive Disks” at the SIGMOD conference in June of 1988. At the time, hard disks were still quite expensive and trying to keep data storage “lean” was not only common, but a necessity. Additionally, companies were using huge mainframe computers, as desktop computers had not been widely introduced in the workplace. This began to change, however, as the acceptance and usage of personal computers gained popularity.
Consequently, hard drives for the first non-mainframe-computers were much cheaper than those used in mainframe systems; thus, being the reason Garth, Gibson and Katz developed the concept of RAID. They argued that several connected, and less expensive, hard disks would beat a single, top mainframe hard disk in terms of performance. And even though using many hard disks meant the failure rate would rise, it was possible to configure them for redundancy so that the reliability of such an array could far exceed that of any large single mainframe drive.
RAID is based on the concept that data spreads, or replicates, across multiple inexpensive or independent drives. Drives within the system are configured so that data can be divided or replicated over two or more drives for load distribution or to help recover data if a drive fails. There are two technical ways to achieve that: either by a hardware solution (a dedicated RAID controller) or a software solution, which is typically included in modern operating systems. Hardware-based systems manage the RAID independently from the host computer using a RAID controller, so the operating system is unaware of the technical workings of the RAID and sees the whole storage system as if it were a single volume connected to the host computer.
Besides these technical implementations, the RAID concept is based on these three fundamental principles:
Based on these principles, the following standard RAID levels have been developed:
Over the years, many more RAID levels have been developed mainly by RAID system manufacturers. Today, we have RAID levels ranging from RAID 0 all the way to RAID 61 and beyond, with larger companies creating custom RAID levels to support different applications and infrastructure requirements.
If disk failure occurs in a RAID 1 or RAID 5 configuration, the user shouldn’t replace the failed drive until ensuring that all data from the remaining disks are backed up. In many cases, especially when the solution used disks that came out the same production, the possibility that another disk will also fail soon is quite high. And this is where the danger of this concept lies:
Even with all the benefits RAID offers, including better performance and data security, users tend to forget that RAID is not a backup. RAID can be used in combination with backups, thus making the whole storage system much more secure, but a RAID is never to be used instead of a backup. On the contrary, when a RAID system fails due to a malfunctioning hardware RAID controller, for example, it’s much more complicated to get the RAID up and running and recover lost data.
NAS systems have become more affordable to home users. They use the built-in RAID configurations in combination with other advanced storage technologies, like deduplication, to get as much space as possible out of their system. However, this comes at a price; in many cases these systems are set up incorrectly and when a failure arises, the entire system breaks down.
Whether you’re a home user or an enterprise IT administrator, it is important to carefully consider what RAID level suits your needs, or if RAID is even necessary at all. Remember, negligence in the beginning can result in serious problems, high costs, and possible data loss in the end.
New ways to store data continue to be explored, invented, and evolve over time, but given its track record, it’s likely that RAID won’t vanish anytime soon.
If you’re in need of RAID data recovery, don’t hesitate to contact the experts at Ontrack.